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been proposed for an increasingly wide range of problems
including variable density flow [4], reacting flow in the zeroAn analysis of the stability of certain numerical methods for the

linear advection–diffusion equation in two dimensions is per- Mach number limit [13], and incompressible flow on locally
formed. The advection–diffusion equation is studied because it is refined meshes [1, 15]. In each of the above papers, the claim
a linearized version of the Navier–Stokes equations, the evolution is made that the condition for stability of the overall method
equation for density in Boussinesq flows, and a simplified form

is essentially the advective CFL conditionof the equations for bulk thermodynamic temperature and mass
fraction in reacting flows. It is found that various methods currently
in use which are based on a Crank–Nicholson type temporal discreti- uDt/h # 1 and vDt/h # 1, (1)
zation utilizing second-order Godunov methods for explicitly calcu-
lating advective terms suffer from a time-step restriction which de-

where u and v are the horizontal and vertical velocitypends on the coefficients of diffusive terms. A simple modification
in the computation of the advective derivatives results in a method components and h is the grid spacing. This condition is
with a stability condition that is independent of the magnitude of used regardless of the magnitude of the viscosity.
the coefficients of the diffusive terms. Q 1996 Academic Press, Inc. The BCG method has been shown to stably compute

viscous, constant density flows under condition (1) for a
variety of problems. (See any of the works cited above forCONTENTS
examples.) However, the analysis of the linearized equa-1. Introduction.
tions given below will show this condition is not sufficient2. Stability of the BCG method.

3. A stable method for including diffusive terms. for the extensions of the method to flows with density
4. Nonlinear stability of an oscillating mode. variations currently in use, and an example is provided that
5. Numerical experiments. 5.1. Instability of the BCG method. 5.2. shows the method can give unstable results for a nonlinear

Stability of the modified BCG method. 5.3. Convergence of the
constant density problem as well. A simple, inexpensivemodified method. 5.4. Stability of the nonlinear method. 5.5. A
modification to the BCG method will be introduced thatBoussinesq flow simulation.

6. Conclusions. results in a method that is stable for the linearized problem
under condition (1) regardless of the size of viscous terms.

The simplest form of incompressible flow which is cou-1. INTRODUCTION
pled with a density equation is the so-called Boussinesq

This paper is intended to clarify the CFL condition nec- approximation given by the following equations. (See
essary for the stability of various versions of the second- Chandrasekhar [6] for a derivation of the Boussinesq ap-
order Godunov/projection method for two-dimensional, proximation.) Let U 5 (u, v)T denote the two-dimensional
incompressible flow first proposed by Bell, Colella, and fluid velocity, p the pressure, r the density, n the fluid
Glaz (BCG) [2]. This method is a second-order extension viscosity, k the diffusivity, and c the gravitational con-
of the projection method introduced by Chorin [8, 7, 9]. stant. Then
(For a survey of projection methods, see Peyret and Taylor
[16], Gresho [12], or Simo [18].) Ut 5 2(U ? =)U 2 =p 1 nDU 1 cĵr

Since the introduction of the basic method for viscous
rt 5 2(U ? =)r 1 kDr (2)flows, variations of and extensions to the BCG method have

= ? U 5 0.
1 This work made possible by a grant from the U.S. Department of

In the original BCG method for constant density flow, theEnergy under Contract DE-FG02-92ER25139. Calculations were per-
formed at Los Alamos National Lab under Contract W-7405-ENG-36. first equation above is discretized using the second-order,
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Crank–Nicholson type formulation (omitting the gravity
term)

Un11 2 Un

Dt
1 =pn11/2

(3)

5 2[(U ? =)U]n11/2 1
n
2

D(Un 1 Un11),

where the term [(U ? =)U]n11/2 is calculated explicitly using
a second-order Godunov procedure. Subsequent exten-

FIG. 1. Location of time-centered edge values.sions to the BCG method for Boussinesq and variable
density flows [4] use an analogous formulation for the
density equation. Also, extensions to reacting flows [13]
use this form for the equations for temperature and mass where again the term (arx 1 bry)n11/2 is explicitly calcu-
fraction. In Section 2, it will be shown using a Von Neu- lated using a second-order Godunov procedure. A Von
mann analysis that this treatment of the density equation Neumann analysis will be carried out on the method out-
has a stability condition that depends on the magnitude of lined by Eq. (5). For more complete details and motivations
k despite the use of the Crank–Nicholson discretization for the methods, the reader is asked to see [2] for the basic
for the temporal derivatives. method or the works cited above for extensions.

In Section 3 a slight modification to the BCG method The Godunov method for calculating the time-centered
is presented that removes the dependence of the stability advective term in Eq. (5) proceeds by constructing time-
restriction on k and, hence, recovers the stability condition centered, cell-edge values of r which are then differenced
(1) when the method is applied to the linearized form of to yield the derivatives. (See Fig. 1 for variable locations.)
the density equation above. Since this is also the linearized Taylor series extrapolation to cell edges from cell-centered
form of the Navier–Stokes equations and the modification values is performed in which temporal derivatives are re-
to the scheme requires very little extra computation com- placed by spatial derivatives using the equations of motion.
pared to the BCG method, the modification should be This procedure results in two time-centered values at each
used for the treatment of the velocity equations also. The cell edge, one computed by the Taylor series extrapolation
analysis presented in Section 4 of a special oscillating flow from each adjacent cell center. In the nonlinear method,
that is unstably treated by the original BCG method gives an upwinding procedure is employed to select which of
further justification for applying the modification to the these two values is used in the computation of the deriva-
nonlinear problem. In Section 5, numerical experiments tives. Since both velocities are assumed to be positive in
illustrating the instability of the original BCG method are the linear case, the upwinding procedure has the effect of
presented as well as experiments showing the stabilizing making the advective derivatives backward differences of
effect of the modification presented in Section 3. the time-centered values rn11/2,T and rn11/2,R defined below.

For example, the first order terms in the Taylor series
2. STABILITY OF THE BCG METHOD expansion from cell centers to the top and right side cell

edges have the form
In order to illustrate the stability requirements of the

full BCG method for the Boussinesq equations, the simpli-
rn11/2,T 5 rn 1

h
2

rn
y 1

Dt
2

(2arn
x 2 brn

y 1 kDrn)

(6)
fied case of constant velocity and zero gravity will be con-
sidered. This reduces Eqs. (2) to the linear advection–
diffusion equation rn11/2,R 5 rn 1

h
2

rn
x 1

Dt
2

(2arn
x 2 brn

y 1 kDrn).

rt 5 2arx 2 bry 1 kDr, (4)
The following difference operators are used to approxi-
mate this Taylor series. Let D2

x and D2
y denote the back-

where a and b are assumed positive constants. As in Eq. ward differences in the x and y direction. For example
(3), the method for approximating Eq. 4 that will be consid-
ered is based on the discretization D2

x (r)i, j 5 ri, j 2 ri21, j .

Likewise, let D0
x and D0

y denote centered differences in thern11 2 rn

Dt
5 2(arx 1 bry)n11/2 1

k

2
D(rn 1 rn11), (5)

x and y directions (e.g., D0
x(r)i, j 5 (ri11, j 2 ri21, j)/2). Finally
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let L5 denote the standard five-point discrete Laplacian r̂n11
k,l 5 S(j, h)r̂n

k,l

L5(r)i, j 5 (D1
x D2

x (r)i, j 1 D1
y D2

y (r)i, j)/h2.
The version of the Godunov method considered first is S(j, h) 5 F1 2 e(1 2 e2ij)

used in [13, 4], where derivative terms in Eq. (6) that are
normal to a cell edge are replaced with centered differ-

[1 1
1
2

(1 2 e)i sin(j) 2
q

2
(1 2 e2ih)]ences, transverse derivative terms with upwind differ-

ences, and the diffusive terms with the standard five-point
Laplacian operator. Using the above notation this 2 q(1 2 e2ih)
gives

3 [1 1
1
2

(1 2 q)i sin(h) 2
e
2

(1 2 e2ij)]

rn11/2,T
i, j 5 ri, j 1

1
2 S1 2

Dt
h

bDD0
y(rn)i, j 2

aDt
2h

D2
x (rn)i, j

1
s

2
[1 2 e(1 2 e2ij) 2 q(1 2 e2ih)] (9)

1
kDt

2
L5(rn)i, j ,

(7) 3 (24 1 2 cos(j) 1 2 cos(h))G@
rn1/2,R

i, j 5 rn
i, j 1

1
2 S1 2

Dt
h

aDD0
x(rn)i, j 2

bDt
2h

D2
y (rn)i, j F1 2

s

2
(24 1 2 cos(j) 1 2 cos(h))G.

1
kDt

2
L5(rn)i, j .

For the numerical method to be stable for given values
of e, q, and s, the maximum magnitude of S(j, h) must

This will hereafter be referred to as the ‘‘base’’ method. be less than or equal to one for all values of j and h in
The original BCG algorithm uses a slightly more complex the range [2f, f]. Let S(e, q, s) be defined as the maxi-
form of the transverse derivative terms, and this is dis- mum value of uS(j, h)u for the values e, q, s. From Eq.
cussed at the end of this section and in Section 3. Also, in (9), it is apparent that S(0, 0) 5 1, hence S(e, q, s) $
the actual implementation of BCG type methods, slope 1 for any e, q, and s. The stability region for the numer-
limiters similar to those developed by Van Leer [19] are ical scheme is, hence, the region of space in which
applied to normal derivative terms, but in the following S(e, q, s) 5 1.
analysis the effect of limiters is not included. As a simplest case, consider the one-dimensional flow

The form of the time-centered advective derivative of when b 5 0 and, hence, q 5 0. In this case
r is now given by (suppressing the n 1 1/2 super-
scripts)

S(j, h) 5 [1 2 e(1 2 e2ij) F1 1
1
2

(1 2 e)i sin(j)]

(arx 1 bry)i, j 5 a
(rR

i, j 2 rR
i21, j)

h
1 b

(rT
i, j 2 rT

i, j21)
h

(8) 1
s

2
[1 2 e(1 2 e2ij)]

5
a
h

D2
x (rR)i, j 1

b
h

D2
y (rT)i, j .

3 (24 1 2 cos(j) 1 2 cos(h))G@
Now suppose that the function r is doubly-periodic on

the region [2f 3 2f] and write r as its discrete Fourier F1 2
s

2
(24 1 2 cos(j) 1 2 cos(h))G.

series

Again, if the scheme is to be stable, uS(j, h)u # 1 for any
ri, j 5 ON/221

k52N/2
ON/221

l52N/2
r̂k,lei(ij1jh), j and h, so consider S(f, f)

S(f, f) 5 (1 2 2e 2 4s 1 8es)/(1 1 4s)
where j 5 kh and h 5 lh. (The range of each is [2f, f).)

Let e and q denote the Courant numbers e 5 aDt/h 5 (1 2 2e)
1 2 4s

1 1 4s
.

and q 5 bDt/h, and define s 5 kDt/h2. A straightforward
substitution of the spectral form of each of the difference
operators used in the above equations results in the follow- Obviously it is necessary that e # 1 for stability, and it is

only slightly more complicated to see that e # 1 assuresing symbol for one step of the base method:
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This quantity is always greater than one if s . 0; hence,
the base scheme is never stable with e 5 q 5 1 and s .
0. Since the symbol is continuous, the unstable region must
contain some of the region given by (11); how much of
this region of course depends on the size of s. For example,
s 5 Af gives

S(f, f) 5 ((1 2 2e)(1 2 2q) 2 1 1 2e 1 2q)/2

5 2eq.

This indicates that a necessary stability condition is that
FIG. 2. Stability region for method when s 5 0 and fourth-order eq # As. A numerical check of the full symbol with s 5 Af

slopes are used. The axis in the plane corresponds to e and q, the verical confirms this limit. Numerical examples showing that this
axis is the magnitude of the symbol. limit is valid are presented in Example 1 of Section 5.

By manipulating (10), the following necessary condition
for stability can be derived:

that the one-dimensional base method is stable for all val-
ues of s. (1 2 2e)(1 2 2q) 1 8s(e 1 q 2 1) # 1. (13)

For two-dimensional flow, the same procedure yields
This condition guarantees only that the highest mode is

S(f, f) 5 (1 2 2e(1 2 q) 2 2q(1 2 e) stably treated and is not sufficient for stability. Since this
condition depends only on the effect of the difference

2 4s 1 8(e 1 q)s)/(1 1 4s)
(10) operators on the highest wave number component, in-

5 ((1 2 2e)(1 2 2q) 2 4s equality (13) applies to any variation of the base method
for which this component is treated in the same manner. In

1 8s(e 1 q))/(1 1 4s).
particular, this applies to any variation which uses centered
differences for the normal derivative and for which the

For s 5 0, S(f, f) takes the familiar form S(f, f) 5 transverse derivative reverts to an upwind difference when
(1 2 2e)(1 2 2q) which gives the stability condition applied to the highest wave number component. The origi-
(equivalent to condition (1)) nal BCG method and each of the variations cited above

fit this criteria and hence have the stability restriction (13).
e # 1 and q # 1. (11) The left-hand side of inequality (13) can be broken into

two parts: the advective piece (1 2 2e)(1 2 2q) and the
A simple program to numerically check the symbol indi- diffusive piece 8s(e 1 q 2 1). These two functions are
cates that this condition is sufficient to stably treat all wave plotted in Fig. 3. Note that the vertical axis on the diffusive
numbers when s 5 0. plot corresponds to units of 8s. When e and q have values

If fourth-order limited slopes are used for the normal between zero and one, the advective piece has a value less
derivatives instead of second order as is often done in than one while the diffusive piece is bounded by 8s.
practice [13, 15, 3], the same numerical process indicates Two facts are immediately apparent from the plots. First,
that, although the highest mode is stably treated under the if e # As and q # As, then the diffusive part is negative
condition (11), because of the appearance of terms with and inequality (13) is satisfied regardless of the size of s.
frequency 2j and 2h in the symbol, not all modes are. A Second, if 8s ! 1 the diffusive part will only affect the
numerically computed surface plot of S(e, q) is shown in stability of the scheme for Courant numbers very close to
Fig. 2. This figure is constructed by sampling e and q in 1. It is because of these two facts that setting the time step
the range [0, 1] at intervals of 1/20 and for each e,q pair in the BCG method by using the advective CFL condition
computing the maximum of uS(j, h)u over a range of values (11) less some small safety factor causes no stability prob-
of j and h. By symmetry, only values of j and h in the lems in many situations.
range [0, f] need to be sampled, and for the figures shown
each were sampled at intervals of f/20. 3. A STABLE METHOD FOR INCLUDING

Again consider (10). It is evident that for any value of DIFFUSIVE TERMS
s greater than zero, using e 5 q 5 1 will yield

The stability problems illustrated in the last section are
caused by the explicit treatment of the diffusive termsS(f, f) 5 (1 1 12s)/(1 1 4s). (12)
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FIG. 3. The advective and diffusive parts of the stability condition. Note that the vertical axis of the diffusive part is in units of 8s.

in the computation of time-centered cell-edge velocities. derivatives that yields a stable method regardless of the
value of s involves simply adding a diffusive term to theWhen the effect of the difference scheme on the highest

wave number component is analyzed, the advective terms definition of r̃. Specifically, instead of the states given in
(14), define the cell edge statessimplify, and the contribution of the remaining explicit

diffusive terms pushes the magnitude of the symbol above
1 for s . 0 and e and q close to 1.

It is possible, however, to remedy this problem by using r̃T
i, j 5 rn

i, j 1
1
2 S1 2

Dt
h

bDD0
y(rn)i, j 1

Dt
2

kL5(rn)i, j ,

(15)a more elaborate form of the transverse derivative terms
in the computation of the advective derivatives. In short,

r̃R
i, j 5 rn

i, j 1
1
2 S1 2

Dt
h

aDD0
x(rn)i, j 1

Dt
2

kL5(rn)i, j .instead of computing these terms with simple upwind dif-
ferences, transverse derivatives are evaluated by differenc-
ing provisional time-centered values which include diffu- The form of the advective derivative is now given by the
sive terms. This procedure causes a cancellation of the convective difference (8) of the following quantities rather
contribution to the symbol and is, in effect, a diffusive or than those given in Eq. (7)
viscous extension to the method for calculating the trans-
verse derivative terms in the original BCG method.

The form of the transverse derivatives in the original
rn11/2,T

i, j 5 ri, j 1
1
2 S1 2

Dt
h

bDD0
y(rn)i, jBCG method is more involved than that of the base

method and is based on Colella’s method for hyperbolic
conservation laws [10]. Assuming again that the velocities 2

aDt
2h

D2
x (r̃R)i, j 1

kDt
2

L5(rn)i, j ,

(16)are constant and positive, the BCG method replaces the
term D2

y (r), appearing in Eq. (7) with a backward differ-
rn11/2,R

i, j 5 rn
i, j 1

1
2 S1 2

Dt
h

aDD0
y(rn)i, jence D2

y (r̃) of the quantity

2
bDt
2h

D2
y (r̃T )i, j 1

kDt
2

L5(rn)i, j .r̃i, j 5 ri, j 1
1
2 S1 2

Dt
h

bDD0
y(r)i, j . (14)

This can be simplified toThe remaining transverse derivative is computed in the
analogous way. In the actual BCG method, the centered
difference appearing in this equation is in fact a limited

rn11/2,T
i, j 5 r̃T

i, j 2
aDt
2h

D2
x (r̃R)i, j ,difference which reverts to a centered difference if no

limiting is done, but again the effect of limiters is not
considered here.

rn11/2,R
i, j 5 r̃R

i, j 2
bDt
2h

D2
y (r̃T )i, j .The necessary adjustment to the calculation of advective
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By substituting the symbol for r̃ and rearranging terms as opposed to the instability of the base scheme shown
the following form of S(j, h) is determined: in Fig. 2.

Some justification of the modification to the calculation
of transverse derivatives discussed above can be provided.

S(j, h) 5 F1 2 e(1 2 e2ij)[1 1
1
2

(1 2 e)i sin(j) One can recognize r̃ as an approximation to a time-
centered, cell-edge value of r computed by only consider-
ing the normal derivative terms in the Taylor series

2
q

2
(1 2 e2ih) S1 1

1
2

(1 2 q)i sin(h)D] given in Eq. (6). The justification for differencing this
quantity rather than just r is not at first clear since it
does not improve the order of accuracy of the slope.2 q(1 2 e2ih)[1 1

1
2

(1 2 q)i sin(h)
However, using a completely different approach, Le-
Veque develops high-resolution methods for advection

2
e
2

(1 2 e2ij) S1 1
1
2

(1 2 e)i sin(j)D] in [14]. Ignoring for a moment the implementation of
slope limiters, LeVeque’s methods closely match those
presented here when the diffusive terms are omitted.

1
s

2
[1 2 e(1 2 e2ij) S1 2

q

2
(1 2 e2ih)D Specifically, the algorithm in [14] referred to as Method

3 has a form identical to the base method applied to the
nondiffusive linear problem. A modification to Method 3

2 q(1 2 e2ih) S1 2
e
2

(1 2 e2ij)D] referred to as Method 4 which includes the effect of
transverse propagation of correction waves is then pre-
sented. This modification does not provide an increase3 (24 1 2 cos(j) 1 2 cos(h))G@ in the second-order accuracy of Method 3, but it is
shown to give better results. Moreover, this correction
has the same form as the normal derivative terms addedF1 2

s

2
(24 1 2 cos(j) 1 2 cos(h))G.

in Eq. (14) that differentiate the BCG method from the
base method.

The effect of S(j, h) on the highest frequency mode is thus There is also a loose justification for the appearance
of the diffusive terms in the computation of the transverse
derivatives based on the derivation in LeVeque [14].S(f, f) 5 [1 2 2e(1 2 q) 2 2q(1 2 e)
Equation (4) can be rewritten

2 4s(1 2 2e(1 2 q) 2 2q(1 2 e))]/[1 1 4s],

rt 5 (2a 1 k­x)rx 1 (2b 1 k­y)ry ,which can be placed in the pleasing form

where ­x and ­y represent differentiation. In the deriva-S(f, f) 5 (1 2 2e)(1 2 2q)
1 2 4s

1 1 4s
. (17)

tion of Method 4 one can symbolicly replace terms of
the form a(ri,j 2 ri21,j) with (a 2 kdx)(ri,j 2 ri21,j) and
likewise terms of the form b(ri,j 2 ri,j21) with (b 2The right-hand side of Eq. (17) is simply the product of
kdy)(ri,j 2 ri,j21), where dx and dy are some discretethe symbol for the advective terms when s 5 0 multiplied
approximation to ­x and ­y . Among the additional termsby the symbol for the Crank–Nicholson terms and has

magnitude less than 1, regardless of s, under the condition that result if this substitution is carried out, are two
appropriately scaled diffusive terms as in the Taylor
series extrapolations in the BCG method (the Laplaciane # 1 and q # 1. (18)
terms in the definition in Eq. (16)) and also one-dimen-
sional diffusive terms that correspond to the terms addedNote that this is only a necessary condition for stability,
in the modification to the transverse derivative termsbut a numerical check of the full symbol for values of
(the Laplacian terms in Eq. (15)).s 5 10n with n ranging from 28 to 8 gives strong evidence

Finally, it should be noted that the only additionalthat the scheme is stable for all values of s under the
computational expense in the modification to the BCGrestriction (18). Note that these numerical checks also indi-
method involves the addition of the Laplacian term incate that using fourth-order slopes, in place of the second-
Eq. (15). This Laplacian must be computed regardlessorder slopes, for the normal derivatives does not affect the
for Eq. (16); hence, the additional computation requiredstability of the modified method. This is true also when

s 5 0 (when the modified scheme and BCG are the same) is insignificantly small.
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4. NONLINEAR STABILITY OF AN
Un11/2,T

i, j 5 Un11/2,B
i, j 5 Un

i, j 2
Dt
2

(1 2 «gi, j) S7
2
h

«gi, jDOSCILLATING MODE

Although a Von Neumann analysis cannot be done on
1

nDt
2 S2

8
h2D (7«gi, j)the full, nonlinear BCG method, it is possible to analyze

the effect of the full method on a single oscillating mode.
Let

Un11/2,R
i, j 5 Un11/2,L

i, j 5 Un
i, j 2

Dt
2

(1 2 «gi,j) S7
2
h

«gi, jD
gi, j 5 (21)i1j

1
nDt
2 S2

8
h2D (7«gi, j).

and consider the velocity field

Letting e 5 Dt/h and s 5 nDt/h2, after collecting terms,u(i, j) 5 1 2 «gi, j
this becomes

v(i, j) 5 1 1 «gi, j ,

Un11/2,T
i, j 5 Un11/2,B

i, j
or more compactly,

5 Un
i, j 2 e(1 2 «gi, j)(7«gi, j) 2 4s(7«gi, j)

U(i, j) 5 1 7 «gi, j Un11/2,R
i, j 5 Un11/2,L

i, j

5 Un
i, j 2 e(1 2 «gi, j)(7«gi, j) 2 4s(7«gi, j)with « ! 1. Assume also that the discrete pressure is con-

stant.
The upwind state at the right and top of each cell will beThe oscillatory velocity of this example on an N 3 N
those given by Un11/2,R

i, j and Un11/2,T
i, j , and using the fact thatgrid is a discrete representation of the exact solution

g2
i, j 5 1,of the Navier–Stokes equations on the periodic domain

[2f 3 2f] given by
Un11/2,T

i, j 5 1 7 e«2 7 (1 2 e 2 4s)«gi, j ,

u(x, y, t) 5 1 2 « cos(N(x 2 t))sin(N(y 2 t))e22N2n t
Un11/2,R

i, j 5 1 6 e«2 7 (1 2 e 2 4s)«gi, j .

v(x, y, t) 5 1 1 « sin(N(x 2 t))cos(N(y 2 t))e22N2n t

It is easy to see that the cell edge values un11/2,R
i, j and

p(x, y, t) 5 2«2/2(sin2(N(x 2 t)) 1 sin2(N(y 2 t))e24n2n t. vn11/2,T
i, j have a MAC-divergence of zero and, hence, are

not changed by the MAC projection step first appearing
in [3] and commonly applied to these edge values.The velocity field here contains a divergence-free oscilla-

The convective form of the advective derivatives istory mode that decays in time. The discrete version of this
mode also has zero divergence if the divergence operator is
based on a centered difference operator; hence, projections

(U ? =)Ui, j 5 (uUx 1 vUy) 5
(uR

i, j 1 uR
i21, j)

2
(UR

i, j 2 UR
i21, j)

hbased on centered differences will not remove this mode
from the numerical solution.

The effect of one time-step of the full BCG method on 1
(vT

i, j 1 vT
i, j21)

2
(UT

i, j 2 UT
i, j21)

h
,

this velocity can easily be written down. Details of the
steps of the method can be found in the references and

and for the edge values given above yieldswill not be covered here. First note that any centered
difference of the oscillating mode will produce a value of
zero. Since « ! 1, the upwind difference operators used

(U ? =)Ui, j 5 (1 1 e«2) S7
2
h

(1 2 e 2 4s)D«gi, jfor transverse derivatives will at each cell be backward
difference operators. In the case of the oscillating mode,
the backward difference operator multiplies the mode by

1 (1 1 e«2) S7
2
h

(1 2 e 2 4s)D«gi, ja factor of 2/h. The five-point Laplacian operator simply
multiplies gi, j by a factor of 28/h2.

Putting these pieces together yields the following cell- 5 7(1 1 e«2)
4
h

(1 2 e 2 4s)«gi, j .
edge values computed by the Taylor series extrapolations
as they appear in the original BCG method (analogous to
the values in Eq. (6)): The full scheme in this case gives
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Un11/2,R
i, j 5 1 6 e(1 2 4s)«2 7 (1 2 e(1 2 4s) 2 4s)«gi, j .S1 2 n

Dt
2

DDU* 5 1 7 «gi, j 2 Dt S7(1 1 e«2)

This then leads to a value of a,
3

4
h

(1 2 e 2 4s)«gi, j

a 5 (1 2 4e(1 1 e(1 2 4s)«2)(1 2 e(1 2 4s)
1 n

Dt
2

D(1 7 «g)i, jD 2 4s) 2 4s)/(1 1 4s)

5 1 7 (1 2 4e(1 1 e«2) 5 [(1 2 2e)(1 2 2e) 2 4e2«2(1 2 e)(1 2 4s)]
1 2 4s

1 1 4s
.

3 (1 2 e 2 4s) 2 4s)«gi, j .

This is the same condition as (17) with the exception of
It is easy to see that the solution to this equation is given the additional «2 term.
by U* 5 1 7 a«gi, j with Numerical experiments demonstrating the validity of the

above analysis are presented in Section 5.4.
a 5 (1 2 4e(1 1 e«2)(1 2 e 2 4s) 2 4s)/(1 1 4s).

(19) 5. NUMERICAL EXPERIMENTS

In this section the results of numerical experiments willThis form of U* is not changed by either the projection
be presented that illustrate several points. First, it is shownoperator in [2] or the approximate projection in [13]; hence,
that the stability bounds derived for the scheme withoutfor these methods Un11 5 U*. It is exactly the fact that
the modification presented in Section 3 do, indeed, havethe oscillating mode is not affected by projection operators
to be met for the method to produce stable results for thebased on centered difference divergences that has
linear advection–diffusion equation. Second, two experi-prompted the use of filters in recent methods to remove
ments are presented to illustrate that the modification tothis mode. (See the discussion in Section 6.)
the method enables stable, second-order accurate resultsIn order for the oscillating part of the solution to be
to be computed for problems using a wide range of s withdamped, it must be true that uau , 1. First, note that if
a CFL restriction independent of s. Third, an experimente 5 1,
using the full nonlinear method will be presented that
shows that the linear stability bounds are relevant in thea 5 (1 1 12s 1 16«2s)/(1 1 4s).
non-linear case. Finally, results from a simulation of Bous-
sinesq flow are included to illustrate the robustness of

This is the same condition given in Eq. (12), except for the algorithm when applied to a fully nonlinear system
the addition of the «2 term. It is evident that the scheme will of equations.
not damp the oscillating mode under the stability condition

5.1. Instability of the BCG Method
e # 1 and q # 1

The first example is designed to illustrate the validity
of the stability condition (13) for the advection–diffusion

for all values of s. Rearranging terms in (19) yields the scheme taken from the original BCG method. In Section
following stability condition which is nearly the same as 2, the Von Neumann analysis given indicates that for s 5
Eq. (13) with e 5 q:

Af, the stability condition is eq # As. In order to numerically
test this limit, two numerical runs are performed; one which

(1 2 2e)(1 2 2e) 2 4e2«2(1 2 e) just meets this requirement and one which just fails. The
initial conditions used consist of a complicated density1 8s(2e(1 1 e«2) 2 1) # 1.
distribution advected by a constant velocity given by u 5
v 5 Ï2/2. The initial density distribution is shown in the

Finally, if s 5 0, the above stability condition reduces to top left picture of Fig. 4 and consists of a smooth hump,
e # 1, as would be expected. a cone, and two slotted disks of density taken from [14].

The effect of the modification to the transverse deriva- For each run, the advective CFL condition
tive terms can be easily traced through this analysis and
results in the time-centered edge values

Dt 5 C
h

max
i, j

(uui, ju, uvi, ju)
(20)

Un11/2,T
i, j 5 1 7 e(1 2 4s)«2 7 (1 2 e(1 2 4s) 2 4s)«gi, j ,
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FIG. 4. Contour plots of the density from example 5.1.

is used to set the time step where C is the advective CFL 5.2. Stability of the Modified BCG Method
number, C 5 Ï2/2. Since u 5 v 5 Ï2/2, this corresponds

To illustrate the stability of the BCG method with the
to setting e 5 q 5 Ï2/2 and Dt 5 h. A 256 3 256 grid is

modification of the transverse derivatives, the same prob-
used (h 5 sAgh) which gives a value of s 5 256k. Hence, if

lem as above is run with k 5 0, 0.0001, 0.001, and 0.01. Figure
the Von Neumann analysis is valid, the scheme should be

5 shows the density contours at time t 5 Ï2/2 for each value
stable when k , a;sA f and unstable when k . a;sA f. Figure 4

of k computed on a 256 3 256 grid with the advective CFL
shows the results from the two experiments. The top right

number C 5 0.95. This corresponds to values of s ranging
picture shows a contour plot of the density after time t 5

from 0 to approximately 3.44. It is evident from the figures
0.1 computed with k 5 0.0012 in which oscillations at the

that the modified method is stably computing the solution
trailing edge of density jumps are clearly evident. These

for each value of k.
oscillations continue to grow exponentially during the cal-
culation. The bottom two pictures show the density at time

5.3. Convergence of the Modified Method
t 5 0.1 and t 5 Ï2/2 computed with k 5 0.0009 and
illustrate that at this value, stable results are being com- To illustrate the accuracy of the modified BCG method

when applied to the advection–diffusion equation, the ad-puted.



444 MICHAEL L. MINION

FIG. 5. Contour plots of the density from example 5.2.

vection of a Gaussian initial density
r(x, y, 0.2) 5

1
4fk1.2

expS 2r 2

4k1.2D.

r(x, y, 0) 5
1

4fk
expS2r 2

4k
D,

When k 5 0, the solution at time t 5 0.2 is the same as the
initial conditions.r 2 5 (x 2 0.5)2 1 (y 2 0.5)2,

Solutions are computed on three different grids with 64,
128, and 256 grid points in each dimension, respectively.is computed. A constant flow given by u 5 10.0 and v 5 5.0
Four runs are performed for each grid size correspondingis used, and the domain is a doubly-periodic unit square. The
to k 5 0, 0.001, 0.01, and 0.1. A CFL number of C 5 0.9375initial conditions can be thought of as an infinite lattice of
is used for all runs which correspond to e 5 0.9375 and q 5Gaussians being advected by a constant flow and diffusing
0.46875. Values of s range from 0 to 24. For each case theat a rate governed by the magnitude of k. For larger values
L1 norm of the error of the numerical solution is computedof k the contributions to the solution from nearby lattice
and is listed in Table I in the columns labeled ‘‘64’’ etc. Thesites must be considered when computing the exact solution.
convergence rates are computed by taking the log2 of theAfter time t 5 0.2, the exact solution for a single Gaussian

when k . 0 is given by ratio of errors on successive grids and are given under the
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TABLE I Consider the evolution of the discrete velocity

Convergence Rates of the Method for the Advected
U(i, j) 5 1 7 «(21)i1j

Gaussian Problem

k 64 Rate 128 Rate 256 by Eq. 2 computed on a periodic domain. The density here
is constant, c 5 0.0, and it is assumed that « ! 1. The

0.0 2.58E-1 1.80 7.40E-2 1.99 1.86E-2 analysis appearing in Section 4 predicts that the numerical
0.001 2.02E-1 1.91 5.42E-2 2.05 1.31E-2

solution at time step n for this problem given by the BCG0.01 6.60E-3 2.01 1.63E-3 2.00 4.09E-4
method will be0.1 1.19E-5 1.84 3.32E-6 1.92 8.77E-7

Un(i, j) 5 1 7 an«(21)i1j, (21)

headings ‘‘rate.’’ A log–log graph of the errors is also pro- where a depends on «, e 5 Dt/h, and s 5 nDt/h2.
vided in Fig. 6. It is evident from the data that not only is Numerical experiments using the original BCG method
the method computing stable results for this problem with and the modified version on the oscillatory velocity field
a stability condition that does not depend on the size of k, were performed on a 128 3 128 grid with « 5 0.001, e 5
but it is also converging to the exact solution at a second- 0.9, and n 5 0.001. The analysis in Section 4 predicts the
order rate. value for a for the original BCG method is approximately

1.2583 which means, of course, that the oscillations will
5.4. Stability of the Nonlinear Method grow in time at an exponential rate. The same analysis

gives a P 0.23623 for the modified method. The plots inIn this example, the full nonlinear BCG method and
Fig. 7 show the relative difference between the maximumthe modification thereof are applied to a velocity field
value of the velocity taken from the numerical runs andconsisting of the sum of a constant field and a highly oscilla-
the predicted values from Eq. (21) with the values of atory mode. It is shown that the size of the oscillatory mode
just mentioned. In both cases the agreement is very good.grows when the original BCG method is used, but it is

quickly damped when the modification is employed. More-
5.5. A Boussinesq Flow Simulation

over, nearly exact agreement with a rate of growth pre-
dicted by an analysis in Section 4 will be shown. The rele- To illustrate the robustness of the modified BCG method

when applied to the full Boussinesq approximation, Eq.vance of this problem is discussed in Section 6.

FIG. 6. Log–log plot of errors from advected Gaussian runs of example 5.3.
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FIG. 7. Relative difference between maximum of velocity and predicted value from example 5.4.

(2) is solved on a periodic 256 3 256 grid with initial computed each step to be at the limit of the linear stability
bound, i.e., Eq. (20) is used with C 5 1.velocity given on the unit square by the unperturbed

shear flow The numerical results are displayed in Figs. 8 and 9. In
each frame of these two figures, a contour plot is displayed

u(x, y) 5 0.0, the right side of which shows the density field and the
left side the vorticity (the solution is symmetric about the
center line). Both the density and vorticity are scaled in

v(x, y) 5Htanh((x 2 0.25)/d) for x # 0.5,

tanh((0.75 2 x)/d) for x . 0.5, these plots to have values between 0 and 1, and the contour
levels range from 0.02 to 0.98 in increments of 0.12. Also,
in order to suppress nonrelevant noise in the contour linewith d 5 0.03. The initial density, taken from [11], has the
corresponding to zero vorticity, any value of the scaledform of a flattened bubble and is given by
vorticity within 1024 of 0.5 is plotted as having value 0.5.

The dynamics illustrated in these plots are quite compli-r(x, y) 5 100r1(x, y)r2(x, y)[1 2 r1(x, y)],
cated. Initially, the density bubble is situated between two
strong shear layers. As the bubble begins to rise, the re-where
sulting perturbation to the velocity field causes the shear
layers to become unstable and roll up into two counterro-
tating vortical structures. Later in the calculation, the bub-

r1(x, y) 5 5
exp(1 2 d2/(d2 2 r2)),

if (y 2 0.25)2 1 (x 2 0.5)2 5 r2 , d2

0, else

ble is dramatically stretched as it passes between the vorti-
cal centers, and the tails of the bubble eventually wrap
around these rotating structures.

and
6. CONCLUSIONS

r 2(x, y)
A simple, computationally inexpensive modification to

the Godunov procedure for computing the time-centered
advective derivatives in the method of Bell, Colella, and5Hexp(1 2 c2/(c2 2 (y 2 1.25)2)), if uy 2 1.25u , c,

0, if uy 2 1.25u $ c, Glaz has been presented. It has been shown that, with this
modification, the method has a stability restriction which
does not depend on the diffusive coefficient for the linearwith c 5 0.975 and d 5 0.25. For this run, the viscosity n and

diffusivity k are both 1024, and the gravitational constant advection–diffusion equation. Since the extra computa-
tional effort required for this modification is negligible,c 5 1.

The numerical scheme used for this problem is adapted it should be utilized in the computation of all advective
derivatives in coupled systems. With the modification, thefrom the one in [15] with the modification to the advective

derivatives presented here, coupled with the method for BCG scheme effectively reaches one of its primary design
criteria: to produce stable results for arbitrary initial data,the density equation from [4] (again with the modification

to the advective derivative terms). No slope limiters of regardless of the cell Reynolds number.
The analysis given in Section 4 suggests that the modifi-any kind are used in this calculation, and the time step is
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FIG. 8. Contour plots from example 5.5. In each plot, the scaled vorticity is on the left and the scaled density on the right.

cation applied to the full nonlinear method enables the by source terms from reacting flows and/or the interaction
of variable density approximate projections with large dis-method to strongly damp oscillatory modes in the velocity

that persisted or grew when computed with the original continuous jumps in the density. Example 5.4 illustrates
that once introduced, BCG type methods will not dampmethod. This analysis is confirmed by the example in Sec-

tion 5.4 and has particular relevance in light of recently such modes in the absence of viscosity and even worse,
can accelerate their growth in the presence of even a smallproposed approximate projection methods.

In recent works it is argued that such oscillatory modes amount of viscosity. It is important to note also that slope
limiters commonly used for the advective derivative inare not physically reasonable and, hence, should be re-

moved from the flow [17, 13]. In order to achieve this, BCG type schemes have no effect on the analysis in Section
4 and, hence, will not help avoid this type of instability.velocity ‘‘filters’’ are developed to damp oscillatory modes

from the numerical solutions and improve results. In the If the numerical solution is faithfully representing the
physical system, however, in the presence of viscosity thesemethod for reacting flows in [13], an additional and similar

filter is applied to the mass fraction field. The numerical modes should be damped, and the modification to the BCG
method appears to do just that. The modification is, ofexperiments presented in these works suggest that such

oscillations can be introduced into the numerical solutions course, not relevant to simulations in which no physical
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FIG. 9. Contour plots from example 5.5. In each plot, the scaled vorticity is on the left and the scaled density on the right.

viscosity is prescribed, but it is logical that the use of the developed in this work appears to have no effect on
the results contained in [5].)modification to the BCG method presented here may help

reduce or eliminate the necessity for filters in simulations
where viscosity is present. REFERENCES
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